Promising Alzheimer’s ‘Drug’ Halts Memory Loss

June 26, 2013 — A new class of experimental drug-like small molecules is showing great promise in targeting a brain enzyme to prevent early memory loss in Alzheimer’s disease, according to Northwestern Medicine® research.
________________________________________
Developed in the laboratory of D. Martin Watterson, the molecules halted memory loss and fixed damaged communication among brain cells in a mouse model of Alzheimer’s.
“This is the starting point for the development of a new class of drugs,” said Watterson, lead author of a paper on the study and the John G. Searle Professor of Molecular Biology and Biochemistry at Northwestern University Feinberg School of Medicine. “It’s possible someday this class of drugs could be given early on to people to arrest certain aspects of Alzheimer’s.”
Changes in the brain start to occur ten to 15 years before serious memory problems become apparent in Alzheimer’s.
“This class of drugs could be beneficial when the nerve cells are just beginning to become impaired,” said Linda Van Eldik, a senior author of the paper and director of the University of Kentucky Sanders-Brown Center on Aging.
The study is a collaboration between Northwestern’s Feinberg School, Columbia University Medical Center and the University of Kentucky. It will be published June 26 in the journal PLOS ONE.
The novel drug-like molecule, called MW108, reduces the activity of an enzyme that is over-activated during Alzheimer’s and is considered a contributor to brain inflammation and impaired neuron function. Strong communication between neurons in the brain is an essential process for memory formation.
“I’m not aware of any other drug that has this effect on the central nervous system,” Watterson said.
“These exciting results provide new hope for developing drugs against an important molecular target in the brain,” said Roderick Corriveau, program director at the National Institute of Neurological Disorders and Stroke, which helped support the research. “They also provide a promising strategy for identifying small molecule drugs designed to treat Alzheimer’s disease and other neurological disorders.”
Courtesy: Science Daily